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STEADY THREE-DIMENSIONAL TEMPERATURE FIELD IN COOLED 

TURBINE BLADES 

V. I. Lokai and E. I. Gunchenko UDC 621.438-253.5.001.2:536.245 

A method based on the use of Green functions is proposed for calculating the tem- 
perature field of cooled turbine blades. The method presumes the use of high-speed 
computers with large memories. 

The creation of stoichiometric gas turbine engines and installations requires the solu- 
tion of complex Scientific--technical problems. One of them is the reliable detailed cal- 
culation of the three-dimensional fields of temperatures and stresses in cooled turbine 
blades. 

With an increase in the gas temperatures and intensification of the cooling the tempera- 
ture gradients increase both over the height of the blades (especially in the basal zone) and 
through the cross section (especially in the zone of the edges and perforations). Under these 
conditions solutions based on the separation of the three-dimensional problem into one-dimen- 
sional and two-dimensional problems [i, 2] can lead to considerable errors. 

An approximate solution of the three-dimensional problem of steady heat conduction in 
application to turbine blades with open cooling, reduced to the stage of practical use in 
contrast to [3], is presented in the present report. Such a problem comes down to integra- 
tion in a simply connected region (the body of the blade) surrounded by a continuous medium 

* (from (the gas and the coolant) with locally varying parameters: the temperature Tsur.me d 
T~ to T~ool) and the heat-transfer coefficients ~ (from ~g on the gas side to acool on the 
coolant si~e). 

The solution described below is also valid for blades with a closed cooling system (a 
multiply connected region). The method presumes the use of a computer. 

In the first approximation we solve the three-dimensional problem of heat conduction 
with %(T) = const, i.e., the system 

02T OaT + OaT + -- 0, (I) 
Ox2 dy ~ 0z z 

~ (T~ur.med -- T~) dF = ~ - ~  [~s=o dF. (2) 
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Here T is the unknown temperature; x, y, and z are the coordinates of points of the body; 
Eq. (2) is the boundary condition on the side of the surrounding medium (the gas and cool- 
ant); T s is the surface temperature of the wall; n s is the normal to the surface of the body. 

In accordance with the Green equation [4] the temperature of an arbitrary point k of 
the surface S of a blade which satisfies the system (I), (2) can be represented by the ex- 
pression 

(Is)  

o 7)  
OT~ Ts dS, ( 3 )  
On s Otz~ 

where the radius-vector r = /(x -- xo) a + (y -- yo) 2 + (z -- zo) 2 is the distance between a 
fixed point Mo(xo, Yo, zo) and the current point M(x, y, z). 

The approximate calculation of the temperatures Tsk on the basis of (3) is carried out 
by the Fredholm method [5]. For this the entire surface of the blade is divided into n ele- 
mentary areas and the integrals in (3) are replaced by finite sums. As a result, we obtain 

= C[ E o " ~ L (Tsur.med - -  Tsi) 1_ d S "  Tsi ~ dS. ( 4 )  
, ' ~ 1" Oil. s 

f ~ l  ( S  i ) i = l  {S i )  

* and T s are taken outside the integral sign, since we use The quantities ~, Tsur.med, 
the assumption that they are constant within each elementary area of the partition. 

We designate the coefficients to the unknown temperature T s in (4) as ~ and the coef- 
ficients to the stagnation temperatures T*ur.med of the medium as ~sur.med. %~hen in place 
of (4) we obtain a closed system of n linear algebraic equations for the determination of 
the temperatures at the surfaces of the n elementary areas of the partition: 

~ ~k~T~ - -  4~n T~(i=k) = ~sur .med k, ( 5 )  

where 

%~i -- ~ , T dS -~- On~ 
(si) (s i) 

�9 sur.medt~== 1~-~ c ~ i T s * u t . m e d i ~ l d s ,  k : l ,  2, 3 . . . . .  n. ( 7 )  

(s~) 

The temperatures at any point of the volume of the blade are found from the equation 

4z~ i sur .med 

The second approximation is satisfied with allowance for the dependence of the coeffi- 
cient of thermal conductivity % on the temperature T. For heat-resistant materials in the 
working temperature range one can take % = X(T) = a + bT with sufficient accuracY. After 
substitution of variables and linearization of the boundary conditions in a way analogous to 
what was done in [2], in place of (i) and (2) we obtain 

02A '_- OZA .j_ 02A _ 0, ( 9 )  
ax z Og 2 OZ 2 

CZ 2 r -  0A (i0) 

Here 

A: :~2=: (a  i bT)2; T =  A--__A~ ~_T~; 
2b V A1 

A I ,~ =: (a ~- bT~)2; Asur.me d sur.med == (a T bTsurome d )z; 
Tx is the blade temperature from the first approximation. 
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Fig. i. Explanatory diagram of calculation of surface inte- 
grals. 

Fig. 2. Vector diagram for determination of direction of 
outer normal to the surface. 

For the second approximation instead of (3) we obtain 

I ~ . . . .  _ _  
A ' k  - -  4~  (2 ]Jr A sur. reed A t  - -  A l  - -  A~) _ l  A ,  - - -  

r On~ _I 

T h e  values of A s at the surface of the blade are determined similarly to (4): 

4:iAs~ " =-: .~'~ ~(z~ (2~.sur.me d "J,_ }.~i- Asi) _I dS -- E A~, J j --Ji[; ...... dS. 
- 1 t  r i=l 

(S i) (S i ) 

(11) 

(12) 

After introducing the designations 

01.- k,~ . �9 dS ~ . --&-[- dS, 

(s~) (si) 

~ ~ "-  c"i (22"sur.med i -- ~'li) 1 d S  
r 

i = l  ( S j )  

(13) 

(14) 

we obtain in place of (12) a system of linear algebraic equations for the determination of 
A s at all n elementary areas of the partition 

n 

N~ (hr 4~Asiii: ;o ~: (~sur.medk, k = 1, 2, tz. ( 1 5 )  
t ' := 1 

The temperatures T at internal points of the volume are determined from the equation 

n 

- b , where A = --4~- ,-- -- ~sur. reed 
i l 

A third and subsequent approximations can be carried out as necessary by analogy with 
the above. 

The systems of equations (5) and (15) include integrals which are parts of the coeffi- 
cients to the unknown quantities Tsi and Asi 
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l Or d S - . - - -  c o s ( r t t s ) d S  - - - % i .  
�9 ., On s -. d S  - -  r ~-z -Oti-~- ,) .! r ~ 

r ~s~) r 

(17) 

The numerical value of such an integral is equal to the solid angle (~ki) whose apex is 
located at the fixed point Mo(xo, Yo, Zo) at the center of the k-th area of the partition of 
the blade surface S, while the solid angle itself has its base on the area S i (Fig. i). If 
the radius-vector from the point Mo(xo, Yo, zo) reaches the area S i from the internal region 
(through the material of the blade) then the quantity ~ki is taken with a "plus" sign [cos. 
(rn s) > 0], while if it reaches S i from the external region then @ki is taken with a "minus" 
sign [cos(rns) < 0]. 

The modulus of the solid angle @ki is calculated as a polyhedral angle by the usual 
methods of analytical geometry. The number of faces u i of the polyhedral angle (see Fig. i) 
is obviously equal to the number of straight lines bounding the area S i. If in the prepara- 
tion of the initial data the points bounding the area S i are numbered counterclockwise (when 
looking at the surface from the outside), then in this case the sign of the _s~ angle can 
be determined from the sign of the scalar triple product of the vectors [6] a, b, and c 
(Fig. 2); i.e., 

! x ~ - - x L  g 3 - - g l  z~ .... z, 

sign % i - -  sign [b c] a =  sign �9 x z - -  x~ Yz - -  g~ z z - -  z~ ( 1 8 )  

; X o - x ]  ~ o - - ~  z o - z ~  i 

The double integral of i/r over the surface of the area S i is reduced to a double inte- 
! 

gral over the surface of its projection S i onto the coordinate plane zy (see Fig. I): 

_l_ d s  =. V 1 ~-. pZ . ~- qZ - -  dS '  == ~ 1 -~- . dydz .  
, ,  r , ,  r j g r  

H e r e  p = 3 x / ~ y  a n d  q = 3 x / ~ z  a r e  t h e  a n g u l a r  c o e f f i c i e n t s  o f  t h e  e q u a t i o n  x = p y  + qz + 
k o f  t h e  p l a n e  t o  w h i c h  t h e  a r e a  Sr  b e l o n g s .  

Expressing the radius-vector r through the Cartesian coordinates and integrating (19) 
first over z and then over y, we finally obtain 

(Si) j = l  

R; V)  In 
- - V [ I < - l n ( 2 A T j ) I  " T i ( V A T  j - M ; )  

+ 2]!Vi V'-A-  a rc tg  H;t  -!- R j  } / J+ ,  

G I/-A~, - % 

t " 

(20) 

where 

t ,  =- y , - -  ~ , - , =  ] y ,  "-- ~ .  .".- m ; ;  t ,+, := Y,+I = - } 1 7  ~ ] Y,4.1 T j  ) 

�9 l z - -  tnj  
A l -~-qa;  G - 1 ! . p " - i - q Z ;  V/=- .p~,o qz  o , k - - -Xo ,  V 

2t  

mj  . . . .  T f l ~ i  - -  I"7 " H i == T i (~ --A-T- 7 i -  M.j); H~ = rnjT;  (1 "-A~I'~ --/v1~); 
T/ 

R j  ~ N j T j - - M i L ; ;  A -- H j t t  i -  R~ " : T j i V  2 ~  0; M j  = p q - F  a~A; 
o 

A'~ = A c j  -',- q (k - -  xo) - -  zo; @j = (qcj  + k - -  xoF .  F (Q - -  Zo)" "-  y~; 

T~ :.~ I -'.. a~ -~- (qa i - p)2; L i  = a~ (cj - -  z o) _ (ajq p) (qcj  -4- k - -  xo) - -  Yo; 

-F m; ; 
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Fig. 3. Results of calculated-- ex- 
perimental test of the method devel- 
oped. 

aj and CJ are from the equation for a straight line in the zy plane, i.e., z = ay + c, 

- -  Zi ! l  - - z j  a j -  z i i i  Z) ; Cj ~ z j - - y j  
Yi~-~ - - Y i  Y i + t - - Y J  

Upon closure of the integration contour tx is taken as tj+ t (j = ui) , where u i is the 
! 

number of straight lines bounding the area S i. 

If the fixed point Mo(xo, Yo, z0) belongs to the same plane as the area Si, i.e., W = 0, 
then 

. T ds  = F W  v 
(s i ) i=l 

- -  I/[ 1 + In (2ATj)I + r~ (V Ar~ - -  M j) 

(si) 

MjR~ \ 
} In (/7~/"2 -~- 2Rjl + H~) - -  

TjG / 

--V) lnt}l ~ , (21) 
',U 

(22) 

In the diagonal elements (i = k) of the systems (5) and (15) the quantity PP~!dS is 
�9 JJ r 
(si) 

calculated from Eq. (21), while ~ki(i=k) = --2~, since the point Mo(xo, Yo, zo) lies inside 
the region of integration. 

We emphasize that the integrals for Eqs. (20) and (21) are calculated on the basis of 
I 

that projection S i max of the surface element onto the coordinate planes which has the larg- 

est area. 

In practice this is realized in the program by the appropriate change in the naming of 
the coordinates so that the projection S~ max lies in the zy plane each time. 

The signs of the integrals calculated from Eqs. (20) and (21) depend on the direction 
of numbering, and therefore the modulus of the calculated value of the integrals should be 
taken in the calculation. 

The method described for the solution of the three-dimensional problem of heat conduc- 
tion was realized in the form of a program for an M-222 computer. With a number of areas 
n = 250 of the partition of the blade surface the time for the formation and solution of the 
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system of equations is 3 h 40 min while the time of calculation of the temperature at one in- 
ternal point is 45 sec. 

The method developed Was tested by comparing the results of the calculation with ex- 
perimental data obtained by blowing through blades with combined cooling (convective + film 
cooling) at the hot wall. A description of the experimental subject is given in [7]. 

The measured and calculated temperatures were compared for the following operating pa- 
rameters: T~ = 905.7~ P~ = 1.37,105 N/m2; T~.in = 373~ Ga = G/Gg = 3%. 

The results of temperature measurements at the surface of the test blade are shown by 
points in Fig. 3. Curve 1 is a calculation by the two-dimensional method of [2] with the 
perforations combined in one cross section; 2) by the same method in a cross section where 
perforations are absent; 3) calculation of the three-dimensional temperature field in a char- 
acteristic element of the blade with allowance for the spatial distribution of the perfora- 
tions. 

It is seen from the graphs that in the middle part of the profile, where the character 
of the temperature field is close to two-dimensional, the results of the calculations by the 
two-dlmensional and three-dimensional theories differ little. In those places where the tem- 
perature field has a clearly expressed three-dimensional character (at the edges due to the 
presence of perforations) the calculations by the two-dimensional theory can lead to con- 
siderable errors (up to 20% at the inlet edge in the example under consideration). 
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HEAT TRANSFER OF A VERTICAL CYLINDER BY FREE CONVECTION 

AND RADIATION 

Yu. Ao Sokovishin and M. V. Shapiro UDC 536.244 

The effect of radiation on free convective heat liberation from the surface of a 
vertical cylinder located in a transparent medium is studied. It is shown that the 
radiative component of thermal flux equalizes the surface temperature. 

Calculation of the thermal regimes of radio electronic devices requires study of heat 
transfer from high temperature elements to the surrounding medium. In calculating heat lib- 
eration from the surfaces of bodies of semiconductor devices~ thermoresistors, microconduc- 
tors, etc., it is necessary to consider the effect of not only transverse curvature on heat 
transfer, but also the interaction of various forms of heat transfer. Of special interest 
in electronics is heat transfer to an immobile medium by free convection and radiation. 
Existing studies of this problem have considered the case of a plane surface and have mainly 
been performed by approximate methods [1-4]. 

We will consider free motion of a viscous incompressible gas with constant physicalprop- 
erties in a boundary layer near a vertical cylinder. The gas is considered optically trans~ 
parent and we neglect the processes of radiation emission, absorption, and scattering. The 
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